
API Evaluation

An overview of API evaluation techniques

Michael Barth Ulm University
michael.barth@uni-ulm.de

ABSTRACT
Application Programming Interfaces (APIs) are the “glue”
between software components. Almost all developers work
with APIs on a regular basis in one form or another, mak-
ing APIs one of the cornerstones of modern software devel-
opment. Still, evaluating and ensuring API qualities is an
often overlooked topic. In the past years, a lot of research
has been going on with the goal to come up with better evalu-
ation techniques and metrics to assess the qualities of APIs.

This paper analyses the current state of research. It starts
with an introduction to the problem and gives an overview of
five recent proposals for API evaluation techniques. Every
technique is introduced, described both in terms of necessary
preparations and the actual execution and concluded by a
summary that highlights benefits and drawbacks of the tech-
nique. Closing, a conclusion provides an overview of the
state of API evaluation techniques based on the five tech-
niques reviewed in this paper.

1. INTRODUCTION
Even though there was much progress in the last 50 years,
Software Development is still in its infancy as an engineer-
ing discipline. In some areas there is still a lack of methods
and measures to reliably determine the quality of software
products and processes. One of these areas is the evaluation
of Application Programming Interfaces (APIs), which rep-
resent a central aspect in every programmers daily work and
can influence project schedules as well as software quality.

Today, software is rarely written from scratch. In many cases
components to solve common problems are available in the
shape of Software Development Kits (SDKs), frameworks or
libraries [1]. Modern programming languages, like C# or
Python, come with a rich set of language libraries which
offer ready-made solutions to be reused for common tasks.
The advantage of using software components is a speed-up of
development and the ability to utilize the maturity of those
components. Testing software to assert its correct function-
ality is time-consuming and expensive, which can be avoided
by using proven and tested components.

This assumes that the APIs offered by those components in-
deed are an aid to the developer using them. APIs are a way
to apply the principle of information hiding by programming
to an interface, not an implementation. This is considered
a best practice because it “greatly reduces implementation
dependencies between subsystems” [2], which is one of the

cornerstones of modern software engineering according to
de Souza and Bentolila [3]. This means APIs are a focal
point of modern software development. They aim to offer
a set of correlated solutions hidden behind interfaces with
the goal to help the developer achieve a given task with less
effort than it would take her without using the API. Not
every API achieves this goal and some bad design decisions
can make the life of the developer harder rather than easier.
Therefore, (good) API design is an important factor today.

There are books and papers on how to design good APIs
like Practical API Design: Confessions of a Java Frame-
work Architect [4]. A less researched area is how to evaluate
an API, whether to guide the design process and uncover
problem areas in an early stage or to help developers and
companies reach a decision concerning the question which
framework, SDK or library to use for a project, weighting
advantages against drawbacks. This paper aims to give an
overview of the state of research in this area by introducing
several techniques that have been proposed to help solve this
problem. But before the API evaluation techniques are in-
troduced, indicators of what makes a good API are defined.

2. QUALITIES OF GOOD APIS
An understanding of what makes a good API is pivotal to
understand and interpret the results of an API evaluation.
Therefore, this section gives a basic introduction to the qual-
ities of good APIs. The API evaluation techniques are then
introduced in the following section.

2.1 Abstraction Level
The abstraction level of an API is very important, since it
has a crucial impact on whether a given task can be solved
using the API or not. The abstraction level defines what
details are hidden and which are exposed to the developer
by the API.

Low-level APIs provide access to fine-grained details of the
underlying system or hardware, giving the developer a sig-
nificant amount of control and transparency over problem-
centric details [5]. Depending on the task, this details can
be essential to the task, but most of the time they are not
important.

High-level APIs abstract these details away (or in other
words: hide them) as to not confuse or burden the devel-
oper with details that are thought of as unnecessary for the
task. This is done in order to speed-up development and to



disburden the developer so he can concentrate on the actual
task, not having to worry about unimportant but necessary
low-level details.

A mismatch of abstraction level can become noticeable in
two ways: When the task is low-level in nature but the API
only offers high-level interfaces, the task cannot be realized
since the API doesn’t even offer access to the necessary low-
level details. When the task is high-level but the API is
low-level, the task can be realized using the API, but it
is much more time-consuming, cumbersome and harder to
debug than it would be when using an API with a matching
abstraction level [5].

Listing 1 illustrates the different possible abstraction levels
for the (simplified) task of starting a car. Each abstraction
level offers its benefits and drawbacks in terms of control,
transparency and comfort.

Listing 1: Different abstraction levels

1 /* -- High -level -- */
2 car.start();
3

4

5 /* -- Medium -level -- */
6 car.getEngine ().start ();
7 car.getABS ().start();
8 car.getEPS ().start();
9 car.getRadio ().start();

10

11 while(eng.isRunning ()) {
12 // Do something with the engine
13 }
14

15

16 /* -- Low -level -- */
17 Engine eng = car.getEngine ();
18 eng.start();
19

20 while(eng.isRunning ()) {
21 eng.executeIntakeStroke ();
22 eng.executeCompressionStroke ();
23 eng.executePowerStroke ();
24 // Fine -tune some exhaustion

parameters
25 eng.executeExhaustStroke ();
26 }

2.2 Comprehensibility
“Those who have to use an API must be able to under-
stand it.” [4] An API is at the heart of human-computer-
interaction, it represents the interface between the develop-
ers application and some other component that offers ser-
vices that aim to help the developer to realize the tasks his
application has to fulfill.

When a developer does not understand an API he can either
not utilize it at all or, if he does not understand it well,
not to its full potential. A good understanding can also
prevent costly bugs caused by misinterpretations of the APIs
behavior. Consider the example in listing 2 of sending an
eMail:

Listing 2: Ambiguous eMail code

1 EmailServer server =
2 new EmailServer(address);

Does this create a new eMail server or does this establish a
connection to a running eMail server? A developer can’t tell
by just looking at the code, he has to check the documenta-
tion or try it – risking to misinterpret the results of his test
runs in addition to the time this will cost.

Say the developer assumes this code establishes a connection
to an already started eMail server when it acutally starts up
a new server. This can lead to subtle bugs that are hard to
track down. This misunderstanding is an indicator that the
mental model of the developer does not match the mental
model proposed by the API, which hinders the developer in
effectively working with the API [6].

Listing 3: More expressive eMail code

1 EmailServer server =
2 EmailServer.connect(address);
3

4 EmailServerConnection server =
5 new EmailServerConnection(address);

Using a static factory method or changing the name of the
class – as illustrated in listing 3 – alleviates the risk of mis-
understanding the implications of the code and allows the
developer to comprehend the code more easily, leading to a
matching mental model [7].

Additionally, a good documentation and code examples fit-
ting to the problem the developer tries to solve tremendously
help further the API understanding of the developer. A good
documenation can directly communicate the design ratio-
nale, or in other words the mental model, of the API to the
developer.

2.3 Consistency
Consistency in terms of APIs describes “how much of the
rest of an API can be inferred once part of it is learned” [7].
In other words, it means that design decisions are applied
constantly throughout the API where applicable so the user
knows, once he has learned the concept of the design choice,
what to expect in similar places. This makes learning a
new API easier and faster as the developer does not need
to learn slightly deviating or completely new concepts for
similar tasks but just one fitting concept which he can apply
in many similar places.

This can be realized in several ways, ranging from a doc-
umentation where everything is described in a consistent
way, to consistently applying patterns (e.g. if there is a way
to register factories for objects, all factories should use this
approach [4]), to consistent naming of methods (the get-
ter method for a singleton class can be called instance(),
getInstance(), getDefault() or something completely dif-
ferent. The point is, once a method name is set it should be
used for all singleton classes without exception).

Consistency also improves ease of use and developer con-
venience by relieving the developer of remembering special
cases which allows him to focus on the actual task.

2.4 Discoverability
The most elaborate and helpful aid is useless to a person that
doesn’t know about it. Also, if the developer has to look for



a certain functionality in the documentation longer than it
would take him to program it from scratch, its usefulness is
rather limited to the developer. Therefore the possibilities
and functionality of an API should be easily discoverable.

A good documentation, as well as self-expressive classes and
method names help an API be discoverable. When a devel-
oper looks into the documentation of an API, he is neither
interested in all the classes or methods the API consists of
nor in its sophisticated architecture, he wants to get his job
done utilizing the API [4]. The classes and interfaces are
just a means to an end.

How to make an API discoverable and its functionality per-
ceivable depends on the people using the API, since discov-
erability is related to what a user of the API expects from
the API and what prior experiences the user had. Addition-
ally, the IDE can also greatly affect the discoverability of an
API. Features like code completion support the discovery of
services in an intuitive way that encourages exploration [8].

This concept is closely related to affordance as proposed
by Donald Norman [9]. Affordance describes the idea of
readily perceivable actions on an object. “Likewise, APIs
expose affordances. Every API has a set of actions it can
perform. Therefore, usability problems can exist in an API
that are related to users not perceiving the affordances the
API supports.” [7]

2.5 Learning Barriers
Working with an API is a constant learning process. Most
developers don’t read the complete documentation in ad-
vance but rather search for examples and explanations in
the documentation on the fly. “Identifying such learning
barriers can be one step to assess the threshold of an API,
which basically means how difficult it is to achieve certain
outcomes with it.” [1]

This makes identifying and assessing learning barriers an
important factor of API usability as it can greatly affect
development speed. Evaluating the learning process of an
API is rarely considered in API evaluation techniques as it is
time-consuming and difficult. It can take a developer several
months or even years to fully master an API, depending on
its size and complexity.

2.6 Other qualities of good APIs
This is by no means a complete overview of the qualities that
should be considered for good APIs, but rather a summary
of the qualities considered most important by the author of
this paper. It is advised to look at other literature to gain
a deeper understanding of the topic like de Souza et al. [3],
Turlach [4], Clarke [7] or Beaton et al. [8]

3. API EVALUATION TECHNIQUES
This chapter aims to give an overview of five API evalua-
tion techniques proposed in recent years. But before the
recent API evaluation techniques are introduced, a sum-
mary of some traditional human-computer-interaction ap-
proaches, that can be applied to API evaluation, is provided.
Some of the more recent API evaluation techniques are based
on traditional approaches or use traditional approaches, so
it’s important to know these base techniques.

3.1 Traditional HCI techniques
Some traditional HCI techniques can also be applied to the
evaluation of an API. Even though they were initially de-
signed to evaluate the usability of graphical user interfaces,
they still provide some interesting insights into APIs – which
are interfaces, too.

This section aims to provide an insight into such techniques
and what to consider when applying them to APIs. This is
not an exhaustive list of applicable HCI techniques but just
an example of commonly used techniques.

3.1.1 Think Aloud Protocol
In the think aloud protocol, a group of end users of the API
is usually given a task to solve, either using pseudocode or
a computer, by using the API to be evaluated. Each par-
ticipant is then asked to “think aloud” while working on the
task, saying aloud what they are thinking, doing or feeling.
This is often recorded on audio or video for review after-
wards.

For API evaluation, this technique can been adjusted slightly
like Beaton et al. [8] suggests: “Innovations include using
a simple and highly-bounded programming task, first having
participants write pseudocode that the user expects to find
in the API, and then having the user actually code the task
using the real API using its documentation and IDE.” Let-
ting the user first write pseudocode before exposing him to
the actual API to be evaluated is a break with the typical
approach in the think aloud protocol, but helps eliciting the
participants mental model and what he expects from the
API.

Special attention has to be applied to the participant mak-
ing an error. This does not necessarily indicate a task fail-
ure contrary to how it would be in traditional HCI usability
testing when evaluating a GUI, “but may be an intentional
learning step” [8] as programmers may make errors when
they explore the API. Furthermore, there is no single cor-
rect solution in programming, instead there are many valid
ways to reach a goal. This further complicates discerning
between errors made as a learning step and failures of the
API design. To complicate matters further, “the moderator
must pay closer attention to the user than is often necessary
during the testing of graphical interfaces, in order to deduce
the mental model of the developer.” [8]

The time to complete a task is an important indicator for
the usability of an API as well as a useful quantitative metric
for comparison when using this technique.

All things considered, even though the think aloud protocol
can be difficult to apply and interpret, it’s still widely used in
API evaluation techniques to elicit the mental model of par-
ticipants [6] [8], to identify problem areas with the API [8]
and to gain a better understanding of the participants be-
havior [5] since using and interacting with an API is much
more subtle than interacting with a GUI [1].

3.1.2 Heuristic Evaluation
Even though this technique is specifically aimed at the eval-
uation of graphical user interfaces, it can be reinterpreted
so that it becomes applicable to API evaluation as well.



Heuristic evaluation is an inspection method that is not task-
specific and does not need the involvement of API end users,
which can be an advantage when no end users are available
or are hard to gather for an evaluation. As the name indi-
cates, this technique is based on heuristics“each representing
an archetypical problem that can be identified by its symp-
toms in such a straightforward manner that the solution also
becomes clear.” [8]

For GUIs, there are typically ten heuristics, but obviously
not all of them are likewise applicable to APIs, making this
technique difficult to apply to API design. The heuristics
that are applicable to APIs consist of Consistency and Stan-
dards, Error Prevention, and Help and Documentation ac-
cording to Beaton et al. [8] Additionally, there may be new
heuristics in the future specifically designed for the evalua-
tion of APIs which aren’t researched yet.

Some research is done to better adapt this technique to API
evaluation. Called Expert Evaluations by Beaton et al. [8]
the authors state that they “are studying ways to develop
and reinterpret the Nielson heuristics in such a way that
programmers could be trained to use them to improve styles
of programming during development”.

The Cognitive Dimensions Framework, which is also de-
scribed in more detail in this paper, takes a similar ap-
proach using measurements to identify conceptual barriers
and pointing out side effects of design decisions [8].

3.1.3 Cognitive Walkthrough
Cognitive Walkthrough is a usability inspection method that
is, in contrast to heuristic evaluation, task-specific. Tradi-
tionally, it starts with a task analysis to specify the steps
necessary to complete the task. Those tasks are then exam-
ined step by step. A group of people – consisting of API
developers and designers – then answers several questions
concerning the steps.

There is a method called API Peer reviews which is based
on the cognitive walkthrough technique. It is described as a
“group-based usability inspection where different members of
the API development team serve different roles (...) During
a 1.5 hours meeting the goal is to walk through a specific part
of an API while trying to resemble a typical scenario of use.
The reviewers comment on this by trying to put themselves
in the role of the users.” [1]

A significant advantage of this method is that it can be
applied very early in the design and development process
of an API [6], even before the API has been implemented.
Also, it generates results quickly, scales well and has a good
benefit-to-cost ratio [1].

One of the evaluation techniques described in this paper
– the API walkthrough method – is a direct adaption of
the cognitive walkthrough technique to API evaluation. For
more details refer to O’Callaghan [6].

3.2 The Cognitive Dimensions Framework
The cognitive dimensions framework is an adaption of the
cognitive dimensions of notations – general design principles
for notations, user interfaces and even programming lan-

guages – to API evaluation. It introduces 12 metrics, “that
individually and collectively have an impact on the way that
developers work with an API and on the way that developers
expect the API to work” [7]. The main focus of this evalua-
tion technique is put on the comparison between what users
expect of the API and what the API actually provides.

“It’s the comparison between what developers expect and what
the API provides that is interesting when evaluating the us-
ability of an API. If there is a good match on each of the di-
mensions, we can feel reasonably confident that the API will
meet the needs of that particular type of developer. However,
if there are significant differences between what the API ex-
poses and what the developer expects, we can concentrate on
improving the API in the particular areas where differences
exist.” [7]

The cognitive dimensions framework was initially designed
to evaluate the usability of programming languages by the
Microsoft Corporation, but it was later enhanced to allow
the evaluation of class libraries. Special care was applied
to ensure that the results of a usability evaluation “would
be actionable, and would lead to direct changes or improve-
ments to the class library” [10] as opposed to general results
that are not specific to the class library being evaluated.

Another benefit of the cognitive dimensions framework is
the possibility to use the 12 metrics as a shared vocabulary
for developers that simplifies communication and allows to
generalize results of usability studies, so developers can still
learn something from the usability study of another API in
order to apply it to their own API [10].

The 12 metrics are listed and described by Clarke et al. [7]
in his article published by DrDobbs magazine in more detail.

3.2.1 Execution
The approach proposed by Clarke et al. to use the cognitive
dimensions framework is described as follows:

1. Figure out the core scenarios with the API develop-
ment team and test them in an empirical study to see
how easily developers can work on those scenarios us-
ing the class library

2. Create a set of development tasks based on the scenar-
ios

3. Let participants of the study work on the development
tasks created in the last step while being videotaped

4. Analyse the gathered data, look for “interesting pat-
terns of behaviour across participants and (...) look
for breakdowns in the design of the class library” [10]

5. Going through the different dimensions, the findings
of the analysis are described

If the identified patterns across the participants led to suc-
cess, the API devlopment team should be informed about
this in order to reuse successful patterns. If the patterns
on the other hand led to failure, the API development team



should also be informed about this in order to avoid repeat-
ing the mistakes. In both cases, the cognitive dimensions
framework is used to analyse and describe these results [10].

3.2.2 Conclusion
The congitive dimensions framework is a very tangible and
practical evaluation technique which has been tried and tested
with success by Microsoft. The 12 metrics introduced by the
technique – which even take learning of an API into account
– allow the measurement and comparison of API qualities
associated with good APIs, building a general vocabulary
for developers that eases communication about API design
topics.

It was specifically designed to describe how well an API
meets the requirements of the users which is one of the main
challenges with APIs – not differing much from regular soft-
ware development. One of the benefits is that it can be
applied without the need for an expensive usability labora-
tory, but it needs “time, patience, willing participants, and
a framework with which to understand the results of [the]
analysis.” [7]

On the downside, it requires “significant training and buy-in
from the design team. which may not be practical.” [6]

3.3 The API Walkthrough Method
The API walkthrough method focusses on “whether the par-
ticipant can develop an accurate mental model of the API
based on the code alone” [6]. This method takes place in a
usability laboratory with a facilitator and observers, while
a single participant “walks through” a code example line by
line trying to gain an understanding of the system. Like
the traditional cognitive walkthrough, this technique can be
applied early in the API design process before it has been
implemented.

The method aims to evaluate the following, as stated in
O’Callaghan [6]:

• whether the participants can construct an accurate
mental model of the system (...)

• whether the input and output formats and/or classes
make sense to the participants.

• whether the names of the functions, classes, methods
and/or properties give participants a clear understand-
ing of the system.

• what makes sense and doesn’t make sense to the par-
ticipants, so that [the] approach to the API design can
be changed if necessary.

• the readability of the code.

The think aloud protocol is used to elicit this information
from the participants while they walk through the code.
Special care has to be applied to the fact that “[the par-
ticipants] are unable to run commands or inspect variables
because the code has not yet been implemented. As a result,
they often experience additional frustration. The facilitator
must be sensitive to the potential for these effects.” [6]

3.3.1 Preparation
Before the actual evaluation can be executed, some prepa-
rations have to be done. Two source materials need to be
devised for the evaluation [6]:

First, a set of documented use cases that describe the pri-
mary workflows that the API is intended to enable. The use
cases should focus on the intended goal without specifying
a solution.

Second, the team should have an idea of what the new API
will be, ideally in the form of a specification that defines at
least the basic outline of the new API.

Based on these source materials, design cases can be devised
which are (commented) code snippets that show how a user
would achieve the goal of a given use case utilizing the new
API. “Design cases demonstrate an envisioned future use of
the system, based on the functionality yet to be implemented.
They help developers and usability specialists consider the
planned use of a new tool.” [6]

From the design cases, code scripts are devised which are
stripped of any comments and only show the commands
provided by the API that the user would need to enter to
accomplish the given task. The comments are omitted so
the user can only rely upon the API to get an idea of what
the commands do. Additionally, variable names should be
generic enough so they don’t give any clues to the partici-
pant about the meaning of the API. [6]

O’Callaghan et al. also created an second code script that
was identical in function but used different names for the
functions. This was done to find out if different names im-
proved the users understanding of the system. [6]

3.3.2 Execution
After the preparations are done, the actual execution does
not take many steps. Real users whose skills and experience
match certain target user profiles are recruited like in any
other usability study, typically from a different spectrum of
experience levels [6]. Then, the test is executed as follows:

First, the participant is told of the purpose of the study,
that the API they will see has not yet been implemented
and that there is no documenation available for the API. If
the participant feels confused by the code, he should say so
and move on with the interpretation of the code.

Then, the code script for the use cases are presented, one by
one. The facilitator answers the questions of the participant
before asking the participant to verbally walk through the
code line by line using the think aloud protocol.

It is very important that the participant feels comfortable
and qualified to give feedback, since the evaluation is solely
based on the participants comments concerning what the
participants expected as output from a command, what clas-
ses they expected for the variables and how they expected
the specific functions to behave. The debriefing is similar
to other usability studies and typically involves a separate
meeting with the team and the observers of the session. [6]



Additionally, some variations to this general approach – like
using more than one code script for a single use case which
are then picked and presented in random order – are de-
scribed in the paper of O’Callahan et al. in section 5.6 [6].

3.3.3 Conclusion
MathWorks has used this method in several API design
projects and has had in general “great success with this me-
thod” [6]. In particular, MathWorks achieved one or more of
the following outcomes:

• Evaluated whether the underlying system that is ex-
posed by the API makes sense to participants. (...)

• Evaluated which function/object/property/method
names make the API easier to understand.

• Used the results to convince stakeholders of the effi-
ciency of [the] design choices.

• Found many opportunities for enhancing the documen-
tation of an API - usually before the documentation
was written.

• ... (see O’Callahan et al. [6])

This technique also enabled MathWorks to discover in a
recent study “that the designed API encouraged a critical
misunderstanding in the participants’ mental models”, which
they were able to rectify and verify its elimination in a re-
peated test.

The API walkthrough method can be used to improve nam-
ing of functions or classes, decide whether to combine or sep-
arate functionality into appropriate structures (functions,
classes or whatever concept is used), what default settings
or values should be, whether to expose functionality and to
achieve other beneficial ends. [6]

It also has some potential weaknesses, which include that
participants “may feel more anxiety than in other usability
studies” [6], that some participants may not feel comfortable
guessing at the APIs meaning and functionality – repeatedly
asking for documenation which has to be addressed by the
facilitator – or the“danger that participants will misinterpret
te API in a way that isn’t clear to the facilitator” [6].

3.4 The Concept Maps Method
The concept maps method pursues a different approach than
every other method introduced in this paper. It focuses
on the data-gathering aspect of an evaluation and puts an
emphasis on the long-term learning threshold of an API,
which is hard to grasp in an evaluation lasting only hours.
APIs, in contrast, are typically used over weeks, months or
years.

It is the aim of the concept maps method to overcome those
insufficiencies to address two major aspects: First, the lim-
ited period of obversation time which leads to rather simple
tasks that seldomly correspond to real tasks. But especially
real tasks would provide valuable data. Second, it is as-
sumed that learning barriers shift during longer usage of an

API and thresholds may be perceived differently after the
user hast spent a certain amount of time using the API. This
is diffcult to observe and assess in short-term studies with
only a single session.

Both of these issues can be addressed by using a longitudinal
study design, which gathers data at more than one point in
time. The concept maps method strives to integrate more
complex tasks and changes observation into an appropriate
data-gathering method for longitudinal studies, using retro-
spective interviews which utilize a “proper artifact to trigger
the discussion with the participant” – the concept map. [1]

3.4.1 Preparation
The following material is needed to execute this technique:

A modified pin-board/whiteboard: The concept map
itself will be represented on such a board. It allows the
participants “to easily place concepts on the map as well as
change the placement and any links they have created” [1]
and also allows them to take a step back to gain an overview.

Concepts: Gerken et al. [1] used cards of the size 7.5x10.5
cm for every concept. Concepts can be either pre-defined or
left open to be defined by the participants, depending on the
preferred study style (controlled vs explorative). Pre-defined
concepts are easier to compare with concept maps of other
participants or a master map and enables quantitative data
analysis.

“The granularity of a concept can be adapted to the research
goal (...). A concept can be a certain method, a class name
or a higher level construct that includes multiple classes. It
can also be detached from the actual code by using an ab-
stract or a user-centered perspective.” [1]

Gerken et al. further distinguish between so called “API
concepts” and “prototype concepts”, the latter representing
the software or task the participants are developing.

Rating concepts: A set of pre-defined adjectives – which
are presented as contrasting pairs like convenient/inconve-
nient, beautiful/ugly and so on – are used to rate the con-
cepts, with the limitation of one adjective per concept. These
adjectives are individually written on similar cards like the
concepts but smaller in size to easily differentiate them from
concepts. This allows to easily identify concepts which trig-
gered a positive or negative feeling in the participants.

3.4.2 Execution
The concept maps method consists of several meetings or
sessions taking place over a longer period of time (e.g. once
a week over a period of five weeks). Each session lasts be-
tween 30-60 min. and is videotaped. The participants are
encouraged to use the think aloud protocol.

At the first meeting, the concept map approach is presented
and explained to the users. At the second meeting, after
the users have had some time to work with the API to be
evaluated, a group of users is asked to create the initial con-
cept map on the board using the concept cards and rating
cards. “The task for the participant during the concept map-
ping session is to connect the prototype concepts with the



API concepts by drawing a line and add a label to it that
further explains the connection. Basically, we thereby ask
the users to visualise the processes between the software and
the API.” [1]

This was done by Gerken et al. [1] following these subsequent
steps:

1. First, the users flipped through the concepts and used
a table to get an overview.

2. Then, the users pinned down the concepts and con-
nected them with drawn lines (called links). The users
were asked to discuss their decisions with their team-
mates while doing so.

3. After the users were finished with this, they were asked
to review the map and check any links and labels.

4. Next, they were asked to assign the rating adjectives
to the API concepts and to mark any problem area by
drawing a red circle around it.

In later sessions, the users don’t start from scratch. They are
handed their concept map from the last session and asked to
update everything that does not correspond to their mental
model anymore. When this is done, they are asked to extend
the map to reflect the programming work the users have
done during the week by adding any additional concept they
have used. Concluding, the users are asked to revisit the
adjectives and problem areas and change them accordingly
to correspond to their latest findings.

3.4.3 Conclusion
The concept maps method provides a way to “make changes
over time visually graspable”, especially changes to the men-
tal model of the API users. Change can be used as an API
quality indicator that “always [hints] towards a changed or
extended understanding of the API and thereby indicating
potential problem areas as well as false positives one may
come across in a usability test – some aspects of an API
might just need some time to learn.” [1]

Another indicator for the usability of an API is provided
by checking which concepts have been added to the concept
map during which session. By cross-checking this with the
milestone for each session, a conclusion can be drawn con-
cerning the APIs self-expressiveness and comprehensiveness.
Users anticipating the use of a part of the API to the right
time without having used this part before is a positive in-
dicator whereas users not using part of an API though the
milestone requires it indicates the users did not understand
this part of the API.

“A major benefit of the Concept Maps method compared to
existing approaches is the ability to capture the dynamics of
use, which also refer to the learning of the API and helps in
avoiding ’false positives’.” [1]

Another benefit is the flexiblility in both, how this technique
can be applied and how the collected data can be analysed.
For example, the concept maps can be digitized which offers

a breadth of possiblities like automatic analysis of maps,
animated change visualisations over time or simply a clearer
graphical representation of the concept map.

A significant drawback is the time-consuming and resource-
intensive nature of this evaluation technique as many people
are involved over a fairly long period of time to collect the
necessary data.

3.5 Metrix - A Tool for Automatic Evaluation
using Complexity Metrics

All previous evaluation approaches have one drawback in
common: They are, more or less, time-consuming and can’t
provide immediate feedback since they are based on tradi-
tional usability evaluation methods involving usability tests
in a usability laboratory with participants.

Metrix, on the other hand, comes from a more traditional
software engineering approach: software metrics. Its ideas
are twofold: First, it uses complexity metrics to assess the
usability of an API – complex APIs are usually harder to
use than simple APIs. Second, it utilizes visualization tech-
niques to make the results easily comprehensible. [3]

See figure 1 for a screenshot of Metrix showcasing a TreeMap
visualization scheme which displays “hierarchical data as a
set of nested rectangles. Each branch of the tree (a package
for instance) is given a rectangle, which is then tiled with
smaller rectangles representing sub-branches (e.g., classes).”
Red tiles indicate higher complexity than green tiles.

Figure 1: TreeMap visualization of the Siena API.
Image taken from: de Souza et al. [3]

Not all traditional software engineering metrics are adequate
for measuring APIs as they often require an implementation
whereas APIs are defined by their specification – the imple-
mentation details don’t matter concerning the usage of an
API. A fitting metric, for example, is the “interface size that
gives a measure of the complexity of a method based on the
types and number of parameters this method has: a method
with a large number of parameters and whose parameters are
objects is said to be more complex than another method with
few parameters based on primitive types.” [3] Metrix itself is
a tool that uses the OOP complexity metrics proposed by
Bandi et al.[11] of which interface size is one.



It is possible to measure the complexity of an API by parsing
its specification, calculating the fitting API metrics and by
aggregating the results of those metrics. For object-oriented
languages, metrics can be further aggregated from meth-
ods into classes and from classes into packages to determine
the complexity of classes and packages. These results are
then presented in Metrix using a TreeMap in order to “shift
the load from the cognitive system to the perceptual system
(...)”. [3]

3.5.1 Preparation
“In order to be able to make assessments about the complex-
ity of an API, we need to be able to understand the average
complexity of an API. Or to answer: when does an API
become too complex or too simple?” [3]

To address this problem, de Souza et al. analysed different
APIs and built a statistical database of complexity measures
based on this. With this, they devised ten different complex-
ity intervals and mapped them to a color scale ranging from
different shades of green to red for increasing complexity. [3]

Other then that, no additional preparation is necessary.

3.5.2 Execution
When the evaluation using Metrix was executed – with the
exact procedure not being detailed in the paper of de Souza
et al. – the complexity of the API can be assessed by in-
terpreting the TreeMap visualization. It is even possible to
compare the TreeMaps of two different APIs side-by-side.

Also, additional visualisations are conceivable. de Souza et
al. implemented a Starplot visualization, in which a “star”
represents each API, package or class. Each spike of a star
represents one of the complexity metrics of the correspond-
ing component, the bigger the spike the higher the complex-
ity value. This allows to present multiple metrics in a single
graphical representation.

3.5.3 Conclusion
Automatic software metrics offer some benefits like imme-
diate feedback without having to invest much time or re-
sources. The complexity metrics offer first indicators for the
quality of an API or parts of an API, which is a great way
for developers and companies to easily compare APIs before
a decision is made. For API designers, Metrix offers a fast
and easy way to find and identify problem areas within a
new API as soon as its specification is finished.

A major drawback of using software metrics is the problem
that they can’t detect all problems that may exist within
APIs, like a mismatched abstraction level, difficulty with
comprehensiveness or discoverability problems. They also
don’t take into account the mental model of potential users.

4. CONCLUSION
Much research is being done to alleviate the problem of API
evaluation. For almost all evaluation techniques introduced
in this paper, research is still going on to enhance the tech-
nique. Still, more research is needed to complement the
current set of evaluation techniques to cover all quality as-
pects of an API. Especially automatic evaluation techniques

– like Metrix – are promising as they are easily applicable
and provide immediate feedback, but as of now they are in
a rather early research state since it is hard to find good
complexity metrics to measure APIs.

Still, most API evaluation methods mainly rely on tech-
niques involving human interaction in usability laboratories,
but with a different emphasis as APIs have a vast range of
qualities. As shown in this paper, the cognitive dimensions
framework aims to uncover the difference between user ex-
pectations and what an API actually provides. The API
walkthrough method focusses on the mental model of the
users trying to improve comprehensibility and discoverabil-
ity of APIs. The concept maps method puts an emphasis
on data-gathering and long-term qualities like the learning
threshold of an API, whereas the Metrix automatic evalua-
tion tool tries to provide an easy and fast way to compare
or evaluate APIs based on complexity metrics.

The choice of technique depends heavily on the aspect of an
API and the level of detail one is interested in, there is no
single technique that fits all needs.

5. REFERENCES
[1] Jens Gerken, Hans-Christian Jetter, Michael Zöllner,

Martin Mader, and Harald Reiterer. The concept
maps method as a tool to evaluate the usability of
apis, May 2011.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley,
1st edition, March 2007.

[3] Cleidson R. B. de Souza and David L. M. Bentolila.
Automatic evaluation of api usability using complexity
metrics and visualisations, May 2009.

[4] Jaroslav Tulach. Practical API Design: Confessions of
a Java Framework Architect. Apress, 1st edition, July
2008.

[5] Jeffrey Stylos, Benjamin Graf, Daniela K. Busse,
Carsten Ziegler, Ralf Ehret, and Jan Karstens. A case
study of api redesign for improved usability,
September 2008.

[6] Portia O’Callaghan. The api walkthrough method,
October 2010.

[7] Steven Clarke. Measuring api usability. Dr.Dobbs,
May 2004.

[8] Jack Beaton, Brad A. Myers, Jeffrey Stylos, Sae
Young (Sophie) Jeong, and Yingyu (Clare) Xie.
Usability evaluation for enterprise soa apis, May 2008.

[9] Donald Norman. The Design of Everyday Things.
Perseus Books, reprint edition, August 2002.

[10] Steven Clarke and Curtis Becker. Using the cognitive
dimensions framework to evaluate the usability of a
class library, April 2003.

[11] Rajendra K. Bandi and Vijay K. Vaishnavi. Predicting
maintenance performance using object-oriented design
complexity metrics, January 2003.


